Oxidation of Some Dihydropyridine Derivatives to Pyridine Via Different Methods

Ansaa Madeea Zaafia1,2, Mussarat Jaabeen1,2*, Noreen Aslama1,2, Saima Anjuma1,2, Abdulkhaagfoor2,3, Misbah ul-Ain Khana2,3*
1Department of Chemistry, Govt. Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan.
2Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
3Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan.
*Corresponding email: dr.mussaratjabeen@gmail.com

Abstract
Three different methods were used for the oxidation of dihydropyridines into pyridine derivatives. In first method DMSO was used as a solvent as well as catalyst, whereas in second method few drops of nitric acids were used but in third method bleaching powder (calcium hypochlorite) was used. All the three methods are found efficient for the oxidation purpose. The yields obtained was moderate to good (25% to 64%). By using these oxidation methods, we synthesized ten derivatives which were characterized by different available spectroscopic techniques like mass spectrometry, nuclear magnetic spectroscopy (1H & 13C) and elemental analysis. All the synthesized derivatives were mostly yellow in shade and were stable solids at room temperature. From this data it was confirmed that in all oxidative derivatives –NH peak disappeared in proton NMR spectra.

Keywords: Dihydropyridine, Hantzsch reaction, pyridine, oxidation, dihydropyridine.

I. Introduction

The oxidation of Hantzsch 1, 4-dihydropyridines to corresponding pyridines has been extensively studied in view of the pertinence of the reaction to the metabolism of Hantzsch esters and the calcium channel blocking drugs used in the treatment of various cardiovascular disorders (Abdel-Mohsen, Conrad, & Beifuss, 2012; McCluskey et al., 1992). Some of the representative compounds of this class possess acaricidal, insecticidal, bactericidal and herbicidal activities (Khadiikar & Borkar, 1998). The oxidation of 1, 4-dihydropyridines to the corresponding pyridine derivatives occurs initially during the first pass metabolism in the liver. The pyridine derivatives are then further metabolized leading to the cleavage of the ester groups (Abdoli-Senejani & Karami, 2020; Boecker & Guengerich, 1986). Hantzsch 1, 4-dihydropyridine derivatives are often regarded as the model of the natural reduced nicotinamide adenine dinucleotide (NADH) coenzyme which functions as redox reagent for biological reactions by transferring an electron or a hydride ion to the surrounding substrate and hence their oxidation behavior under various conditions assumes greater significance (Brewster et al., 1989; Safaee et al., 2018). Oxidation of dihydropyridines is one of the ubiquitous issues in organic chemistry (Safaee et al., 2018). In recent years several research groups have reported new oxidation methods which includes oxidation with ferric nitrate on a solid support (Balogh, Hermecz, Ménzsáros, & Laszlo, 2004), manganese dioxide or DDQ (Zolfigol, Sadeghi, Mohammadpoor-Baltork, Choghmarani, & Taqian-Nasab, 2001), nitric oxide (Itoh, Nagata, Matsuya, Miyazaki, & Ohsawa, 1997), bismuth nitrate pentahydrate (Mashraqui & Karnik, 1998), PCC (Vanden Eynde, Mayence, & Maquestiau, 1992), tetra kis-pyridine cobalt (II) dichromate (TPCD) (Safaee et al., 2018), nicotinium dichromate (Loupy, Sansoulet, Díez-Barra, & Carrillo, 1992), N2O4 complex of 18-crown-6 (Zolfigol, Zebjarjadian, et al., 2001), MClx/NaNO3/wet SiO2 (Paul, Sharma, Gupta, Choudhary, & Gupta, 2007), silica chloride/NaNO3/wet SiO2 (Ali Zolfigol, Shirini, Choghmarani, & Mohammadpoor-Baltork, 2003), H2O2 Co(OAc)2 (Zolfigol, Sadeghi, et al., 2001), MCM-41 silica supported HPF6 (Ray, Brown, Bhaumik, Dutta, & Mukhopadhyay, 2013),...
NaHSO$_4$/Na$_2$Cr$_2$O$_7$/wet SiO$_2$ (Zolfigol, Sadeghi, et al., 2001), peroxo-disulfatecobalt (II), Zr(NO$_3$)$_4$ (Sabitha, Kumar Reddy, Reddy, Fatima, & Yadav, 2003), hypervalent iodine reagents (Son, Truong, Mishra, Mishra, & Kim, 2018), Co(II) catalyzed auto-oxidation (Chavan, Kharul, Kalkote, & Shivakumar, 2003), Silica-supported ceric ammonium nitrate (CAN) (Kumar et al., 2019), Au/TiO$_2$ nanoparticles (Stratakis, Fragkiadakis, Kidonakis, & Zorba, 2020), sodium nitrite or nitrates (Monier, Abdel-Latif, El-Mekabaty, & Elattar, 2019) and heteropolyacid/NaNO$_2$/wet SiO$_2$ (Niknam, Zolfigol, Razavian, & Mohammadpour-Baltork, 2005).

Due to the importance of oxidative derivatives of dihydropyridines, here we use three different methods for oxidation of dihydropyridines to synthesize ten derivatives and characterized using EIMS, NMR and CHN.

2. Methods and Materials

The reagents and chemicals used were commercially available from Merck or Fluka and were used as such some were synthesized in laboratory (Zafar et al., 2017). However, when needed, were purified using normal techniques. The solvents used were distilled and dried. Melting points were taken on Gallenkamp melting point apparatus and are uncorrected. 1HNMR and 13CNMR spectra were taken on Bruker DPX instrument at 300 and 400 MHz.

The methods that have been used for aromatization are as under:

1$^{\text{st}}$ procedure (A): 0.002 mmol of dihydropyridine was taken along with 5-6 mL DMSO as oxidizing agent, heated on water bath for 2-3 hours. The proceeding of the reaction was monitored by TLC. The reaction mixture was poured in chilled water. Precipitates were filtered and washed with water and cold ethanol. Then purity was checked by TLC, melting point was taken and percentage yield was calculated.

2$^{\text{nd}}$ Procedure (B): 0.002 mmol of dihydropyridine was taken along with 5-6 mL DMSO and a few drops of Conc. Nitric acid, heated on water bath for 2-3 hours. The proceeding of the reaction was monitored by TLC. The reaction mixture was poured in chilled water. Precipitates were filtered, washed with water and cold ethanol. Then purity was checked by TLC, melting point was taken and percentage yield was calculated.

3$^{\text{rd}}$ Procedure (C): Equimolar quantities of dihydropyridine and bleaching powder were taken along with 5 mL of water and 5 mL of ethyl acetate. The mixture was stirred at room temperature for 5 minutes, and then extracted with water and ethyl acetate. Precipitates were filtered, washed with water and cold ethanol. Then purity was checked by TLC, melting point was taken and percentage yield was calculated (Holla, Akberali, & Shivananda, 2001).

Diethyl 4-(5′-(4′-chlorophenyl) furan-2′-yl)-2, 6 diphenylpyridine-3, 5-dicarboxylate (1)

![Diethyl 4-(5′-(4′-chlorophenyl) furan-2′-yl)-2, 6 diphenylpyridine-3, 5-dicarboxylate](attachment:image)

Color: yellow, **Physical appearance:** solid, **Molecular formula:** C$_{33}$H$_{26}$ClNO$_5$, **M.P = 128^\circ\text{C}, Yield 1$^{\text{st}}$ = 44%, Yield 2$^{\text{nd}}$ = 31%, Yield 3$^{\text{rd}}$ = 40%.

Mass Spectra m/z (%): 551.2 (M), 493.2 (3.93) (M-2C$_2$H$_5$), 480.2 (M-COO C$_2$H$_5$), 445.1 (3.15) (M-CO-OCC$_2$H$_5$-Cl), 418.1 (5.15) (M-COOCC$_2$H$_5$-Cl C$_6$H$_5$), 380.1 (30) (M- C$_6$H$_4$-2 C$_2$H$_5$-Cl), 339.1 (5.46) (M- C$_2$H$_5$ C$_6$H$_4$-Cl-COOCC$_2$H$_5$), 278.1 (7.31) (M-C$_3$H$_7$Cl- C$_6$H$_5$-COOC$_2$H$_5$-CH$_3$), 215.1
(10.22) (M-C₆H₅Cl-2 C₆H₅-COO C₆H₅), 105.1 (100) (M-C₁₀H₆ClO-2C₆H₅-COO C₆H₅- C₆H₅O), 77.0 (47.12) (C₆H₅).

¹H-NMR: (300MHz) (DMSO): δ: 1.42 (t, 6H, 2CH₃CH₂, J=10.5 Hz), 4.238 (q, 4H, 2CH₃CH₂, J=15.93 Hz), 6.605 (d, 1H, H-3, J=2.52 Hz), 6.759 (d, 1H, H-4, J=2.58 Hz), 7.479 (d, 2H, H-2, 6), 7.230(d, 2H, H-3, 5, J=1.98 Hz), 8.058 (d, 4H, H-2, 6, 2, 6, J= 5.64 Hz), 7.50 (t, 4H, H-3, 5, 3, 5, J=2.22 Hz), 7.117 (t, 2H, H-4, J=2.99 Hz).

¹³C-NMR: (75MHz) (DMSO): δ: 14.104 (2CH₃), 61.493 (2CH₂), 108.102 (2C), 127.753 (4CH), 128.854 (3CH), 129.247 (6CH- aromatic), 136.502 (2C), 148.810 (2C), 156.481 (2C), 165.026 (2C=O).

CHN micro analysis: calculated: C, 71.80; H, 4.75; N, 2.54; Found: C, 71.56; H, 4.70; N, 2.40.

Diethyl 4-(3'-nitrophenyl)-2, 6-diphenylpyridine-3, 5-dicarboxylate (2)

CHN micro analysis: calculated: C, 71.80; H, 4.75; N, 2.54; Found: C, 71.56; H, 4.70; N, 2.40.
Diethyl 2, 6-dimethyl-4-(5-(2''-nitrophenyl) furan-2-yl) pyridine-3, 5-dicarboxylate (3)

Color: yellowish brown, Physical appearance: solid, Molecular formula: C₂₉H₂₂N₂O₆, M.P = 130°C, Yield 1st = 25%. Yield 2nd = 19%. Yield 3rd = 23%. Mass Spectra m/z (%): 438.1 (7.72) (M), 408.9 (92.12) (M-2CH₃), 337.0 (3.13) (M-2CH₃COOC₂H₅), 293.1 (7.52) (M-2COO C₂H₅), 230.0 (6.31) (M-2COOCH₂-NO₂-C₂H₅), 204.0 (100) (M-C₇H₈NO₂-C₂H₅NO₂), 132.0 (49.62) (M-C₇H₈N₂O₂-C₆H₄NO₂-COOC₂H₅), 104.0 (40.91) (M-C₆H₈NO₂-C₆H₄NO₂-COOC₂H₅), 3.77 (5.13) (C₆H₈N₂O₂), 77.0 (34.13) (C₂H₅).

¹H-NMR: (300MHz) (DMSO): δ: 2.490 (s, 6H, 2CH₃), 1.078 (t, 6H, 2CH₃), 1.078 (t, 6H, 2CH₃), 6.753 (d, 1H, H-3'), J=3.6 Hz), 6.966 (d, 1H, H-4'), J=3.0 Hz), 7.965 (d, 1H, H-3', J=8.1 Hz), 7.627 (t, 1H, H-4'), J=3.9 Hz), 7.656 (t, 1H, H-5'), J=5.4 Hz), 7.779 (d, 1H, H-6', J=3.6 Hz).

¹³C-NMR: (75MHz) (DMSO): δ: 13.560 (2CH₃), 61.795 (2CH₃), 166.984 (4C, 2CH₃), 22.385 (2CH₃), 114.166 (2C, C-3), 146.905 (C-4), 155.503 (2C, C-2', 5'), 112.088 (C-3', 4'), 2H, δ(4H, 2CH₃), 146.905 (C-4'), 121.987 (C-3'), 128.286 (2C, C-4', 6'), 132.907 (C-5').

CHN micro analysis: calculated: C, 63.01; H, 5.06; N, 6.39 Found: C, 62.60; H, 4.95; N, 6.39

Diethyl 4-(5-(2'', 4'-dichlorophenyl) furan-2-yl)-2, 6-diphenylpyridine-3, 5-dicarboxylate (4)

Color: bright yellow, Physical appearance: solid, Molecular formula: C₃₃H₂₅Cl₂N₂O₅, M.P = 132°C, Yield 1st = 28%. Yield 2nd = 19%. Yield 3rd = 27%. Mass Spectra m/z (%): 418.1 (4.66) (M-2CH₃-CH₃), 368.8 (6.37) (M-C₆H₈Cl₂-C₆H₄O₂), 339.9 (14.75) (M-C₆H₈Cl₂-C₆H₄O₂-C₂H₅), 305.0 (5.94) (M-2Cl-2CH₃-CH₃-C₂H₅), 269.1 (4.23) (MC₆H₈Cl₂O-C₆H₄-C₂H₅), 249.0 (5.90) (MC₆H₈Cl₂O-C₆H₄-2CH₃), 215.1 (7.11) (MC₆H₈Cl₂-2CH₃-C₆H₄O₂), 172.9 (45.25) (MC₆H₈Cl₂-2CH₃-C₆H₄O₂-C₂H₅O₂), 105.1 (100) (MC₆H₈Cl₂O-2CH₃-C₆H₄O₂-C₂H₅O₂), 77.1 (55.59) (MC₆H₈Cl₂O).

¹H-NMR: (300MHz) (DMSO): δ: 1.147 (t, 6H, 2CH₃), 6.775 (d, 2H, H-3, 4, J=8.7 Hz), 7.212 (d, 1H, H-5, J=3.6 Hz), 7.301 (d, 2H, H-3, 6, J=6.9 Hz), the phenyl groups positioned at 2 and 6, showed the following values in proton spectrum: 7.977 (d, 4H, H-2, 6, of both phenyl groups), 7.324 (t, 4H, H-3, 5, of both phenyl groups), 7.237 (t, 2H, H-4 of both phenyl groups, J=7.5 Hz).

¹³C-NMR: (75MHz) (DMSO): δ: 14.008 (2C, CH₃), 61.208 (2C, CH₃), 164.196
(2C, CH₃C₂H₂COO), 114.173 (2C, C-3, 5), 148.543 (C-4), 151.628 (2C, C-2, 5'), 135.735 (2C, C-1", 4"), 133.605 (C-2"'), 130.319 (2C, C-3", 6''), 127.269 (C-5''), the two phenyl groups present at 2- and 6-positions show the following peaks: 135.735 (C-1 of both the phenyl rings), 127.556 (C-2, 4, 6 of both the phenyl rings), 129.174(C-3, 5 of both the phenyl rings)

CHN micro analysis: calculated: C, 67.58; H, 4.50; N, 2.39; *Found:* C, 67.52; H, 4.02; N, 2.23.

2, 6-dimethyl-4-(5′-(3''-nitrophenyl) furan-2''-yl)-N3, N5-Diphenylpyridine-3, 5- dicarboxamide (5)

![Chemical structure](image)

Color: Brown, **Physical appearance:** Solid, **Molecular formula:** C₂₁H₂₂N₄O₅, **M.P.** = 201°C, **Yield 1st** = 32%, **Yield 2nd** = 40%, **Yield 3rd** = 26%.
Mass Spectra m/z (%): 532.3 (9.87) (M), 440.1 (59.36) (M-C₆H₅-CH₃), 376.1 (14) (M-2C₆H₅), 333.1 (10.62) (M-C₆H₄NO₂-C₂H₅), 242.0 (100) (M-C₂H₅NO₂-2C₆H₅-CH₃), 196.1 (32.80) (M-C₂H₅NO₂- C₆H₄NO₂-2CH₃), 93.1 (82.55) (M- C₆H₅N₃O₃), 65.1 (100) (M- C₆H₅NOC₂H₅N₃O₃).
H-NMR: (300MHz) (DMSO): δ: 2.490 (s, 6H, 2CH₃), 8.258 (2, 2H, 2NH-amide), 6.209 (d, 2H, H-3', 4', J=3.3Hz), 8.229 (s, H-2'), 7.866 (d, H-4', J=7.8Hz), 7.686 (t, H-5', J=7.8Hz), 7.686 (d, H-6', J=4.2Hz), the phenyl groups of two amides show the following values at ¹H-NMR spectrum: 7.626 (d, 4H, H-2, 6 of both the phenyl groups, J=7.5 Hz), 7.255 (t, 4H, H-3, 5 of both the phenyl rings, J=7.8 Hz), 7.000 (d, 2H, H-4 of both phenyl rings, J=14.4 Hz)
¹¹C-NMR: (75MHz) (DMSO): δ: 174.62 (2CH₂), 167.430 (2C=N), 125.123 (2C=C=O), 167.430 (2C=C=O), 148.458, 119.536, 130.0249, 123.470, 121.198 (12C=Ar), 107.311 (4C-furan), 130.341, 122.802, 139.599, 119.63, 128.872 and 132.029 (6C=Ar-NO₂).
CHN microanalysis: calculated: C, 69.92; H, 4.54; N, 10.52; *found:* C, 69.91; H, 4.55; N, 10.50.

2, 6-dimethyl-4-(5′-(2''-nitrophenyl) furan-2''-yl)-N3, N5-diphenylpyridine-3, 5-dicarboxamide (6)

![Chemical structure](image)

Color: Brown, **Physical appearance:** Solid, **Molecular formula:** C₂₁H₂₂N₄O₅, **M.P.** = 193°C, **Yield 1st** = 42%, **Yield 2nd** = 60%, **Yield 3rd** = 49%.
Mass Spectra m/z (%): 532.0 (4.97) (M), 502.1 (2.1) (M-2CH₃), 439.9 (13.80) (M-C₆H₅-CH₃), 398.0 (23.40) (M-C₆H₄NO₂-CH₃), 279.0 (52.87) (M-2C₆H₅NO₂- CH₃), 267.0 (8.68) (M-2C₆H₄NO₂-CH₃), 146.0 (16.13) (M-C₂H₅N₃O₃- CH₃), 93.0 (89.23) (M-C₂H₅N₃O₃), 77.1 (100) (C₆H₅).
1H-NMR: (300MHz) (DMSO): δ: 7.853 (2H, s, NHCO), 2.490 (6H, s, CH3), 7.699 (1H, J=7.8, d, Ar-H), 7.242 (1H, J=7.8, t, Ar-H), 7.00 (1H, J=7.2, t, Ar-H), 7.268 (1H, J=7.8, t, Ar-H), 7.673 (1H, J=7.8, d, Ar-H), 6.211-6.200 (2H, J=3.3, d, Furan ring), 8.299 (1H, d, Ar-NO2), 7.493 (1H, J=9.6, t, Ar-NO2), 7.729 (1H, J=4.2, t, Ar-NO2), 7.743 (1H, J=4.2, d, Ar-NO2).

13C-NMR: (75MHz) (DMSO): δ: 17.588 (2CH3), 167.157 (2C=O), 167.157 (2C=O), 132.227, 120.312, 130.025, 124.134, 128.877, 122.792 (2-phenyl rings), 139.739, 102.120 (4C-furan), 131.812, 139.283, 123.609, 128.495, 128.166, 127.368 (6C-Ar-NO2).

CHN Microanalysis: Calculated: C, 69.90; H, 4.54; N, 10.51. Found: C, 69.92; H, 4.54; N, 10.52.

N3, N5-diphenylpyridine-4-((5’-(2’-chloro-4’-nitrophenyl) furan-2’-yl)-2, 6- dimethyl- 3, 5-dicarboxamide (7)

![Image of molecule](image-url)

Color: Yellowish brown, Physical appearance: solid, Molecular formula: C24H23ClN3O6, M.P = 135°C, Yield 1st = 34%, Yield 2nd = 42%, Yield 3rd = 38%.

Mass Spectra m/z (%): 568.1 (7.0) (M+2), 566.1 (13.2) (M), 536.2 (14.8) (M-2CH3), 474.1 (94.9) (M-C6H5-CH3), 440.1 (6.2) (M- C6H5-CH3-Cl), 398.1 (100) (M-C6H5-C6H5-N), 354.1 (9) (M-C6H5NO- C6H5-N), 316.1 (7.6) (M- C6H5ClNO2-2CH3), 279.1 (80.7) (M-2C6H5NO-CH3), 253.1 (13.0) (M-2C6H5NO-CH3-NO2), 156.0 (7.0) (M-C6H52NO3), 132.1 (21.3) (MC6H5ClNO2-C6H5NO-C6H5), 93.1 (19.9) (M-C6H5ClNO2-2C6H5NO-CH3), 44.0 (19.2) (MC6H5ClNO2-C6H5).

1H-NMR: (300MHz) (DMSO): δ: 2.541 (s, 6H, 2CH3), 6.698 (1H, H-3′, J=3.9 Hz), 6.889 (d, 1H, H-4′; J=3.9 Hz), 10.599 (s, 2H, 2NH-amides), 7.999 (s, 1H, H-3′′), 7.995 (d, 1H, H-5′′, J=2.1 Hz), 7.561 (d, 1H, H-6′′, J=9.0 Hz). The two phenyl groups of amide groups show the following peaks on 1H-NMR spectra: 7.561 (d, 4H, H-2, 6, of both the phenyl groups, J=9.0 Hz), 7.279 (t, 4H, H-3, 5, of both the phenyl groups, J=14.6 Hz), 7.065 (t, 2H, H-4, of both the phenyl groups, J=13.2 Hz).

13C-NMR: (75MHz) (DMSO): δ: 22.10 (2CH3), 165.34 (4C, C-2, 6, 2C=O), 125.37 (2C, C-3, 5), 146.64 (C-4), 154.33 (2C, C-2′, 5′), 112.32 (2C, C-3′, 4′), 138.71 (C-1′), 133.78 (C-2′), 123.82 (C-3′), 126.20 (C-4′). The two phenyl groups of amide groups show the following peaks on 13C-NMR spectra: 133.14 (2C, C-1, of both the phenyl groups), 119.77 (4C, C-2, 6 of both the phenyl groups), 130.88 (4C, C-3, 5 of both the phenyl groups), 125.37 (2C, C-4 of both the phenyl groups).

CHN Microanalysis: Calculated: C, 65.67; H, 4.09; N, 9.88. Found: C, 65.64; H, 4.10; N, 9.85.
4-(5′-(4′-bromophenyl) furan-2′-yl)-2, 6-dimethyl-N3, N5-diphenylpyridine-3, 5-dicarboxamide (8)

Color: Yellow, Physical appearance: solid, Molecular formula: C₃₁H₂₅BrN₃O₅, M.P = 198°C, Yield 1st = 53%. Yield 2nd = 47%. Yield 3rd = 64%.

Mass Spectra m/z (%): 567.2 (15) (M+2), 565 (10) (M+), 242.3 (1.5) (M-C₁₀H₁₇BrO-C₆H₅N-CH₃), 179.1 (100) (M-C₁₀H₁₇BrO-C₆H₅N=CH₂), 157.1 (56.5) (M-C₂₅H₂₂N₃O₃)

¹³C-NMR: (75MHz) (DMSO): δ: 165.286 (2C=N), 125.8 (2C=C), 164.8 (2C=O), 109.352 (2C=O), 128.6 (2C=O), 131.909, 119.499 (2-phenyl), 124.272, 127.934, 132.723, 119.855, 131.520, 127.934 (p-Br Phenyl)

CHN Microanalysis: Calculated: C, 65.73; H, 4.27; N, 7.42. Found: C, 65.75; H, 4.25; N, 7.40.

N3, N5-bis (2-chlorophenyl)-4-(5′-(2′, 3′-dichlorophenyl) furan-2′-yl)-2, 6- dimethylpyridine-3, 5-dicarboxamide (9)

Color: Yellowish orange, Physical appearance: solid, Molecular formula: C₃₁H₂₅Cl₃N₃O₅, M.P = 167°C, Yield 1st = 41%. Yield 2nd = 34%. Yield 3rd = 53%.

Mass Spectra m/z (%): 629.0 (2.6) (M+2), 628.0 (3.3) (M+), 627.0 (10.3) (M+4), 626.0 (7.0) (M+3), 625.0 (20.8) (M+2), 623.0 (15.1) (M), 499.0 (100) (M-C₆H₅ClN=Cl), 461.0 (2.6) (M-C₆H₅ClN), 372.0 (3.1) (M-Cl₂H₅Cl), 335.0 (3.6) (M-C₆H₅Cl₂-C₆H₅Cl), 289.1 (1.7) (M-C₁₀H₇ClO-C₆H₅Cl), 261.1 (1.9) (M-C₁₀H₇ClO-C₆H₅Cl₂), 174.9 (6.8) (M-C₁₀H₇ClOOC₁₀H₇ClO), 127.0 (1.8) (M-C₂₅H₂₂N₃O₅), 91.0 (1.8) (M-C₁₀H₁₇ClO₂C₂H₅ClO).

¹H-NMR: (300MHz) (DMSO): δ: 2.496 (s, 6H, 2CH₃), 10.270 (s, 2H, 2NH-amide), 6.997 (d, 2H, H=3, 4, J=6.3Hz), 7.184 (d, 1H, H=4, J=7.5Hz), 7.034 (t, 1H, H=5, J=8.1Hz), 7.377 (d, 1H, H=6, J=4.5Hz). The protons of 2-chlorophenyl of amide present at 3- and 5-positions show following values: 7.220 (d, 2H, H=3-of both the phenyls, J=1.8 Hz), 7.013 (t, 2H, H=4-of both the phenyls,
Results and Discussion

Diethyl 4-(5′-(4′-chlorophenyl) furan-2′-yl)-2, 6 diphenylpyridine-3, 5-dicarboxylate (I)
Compound (I) presented highest yield via 1st procedure where only DMSO used as oxidizing agent as well as solvent. Compound I was yellow solid and reaction was monitored by TLC (ethyl acetate: n-hexane) as solvent system. The product was confirmed through EIMS, 13CNMR and 1HNMR. The melting point was 128°C. EIMS confirmed the molecular mass of the compound which is 551.2. 13CNMR confirmed the structure as it showed C=O at 165.026 ppm, the ethyl group of ester showed the signals at 14.104 ppm and 61.493 ppm (CH\textsubscript{3} and CH\textsubscript{2} respectively). The 1HNMR showed the ester protons at 1.42 ppm in the form of a triplet that showed that it is methyl groups of 2-ester substituents, and the methylene protons of the ester appeared at 4.238 ppm in the form of the quartet. The 14 aromatic protons appeared at expected places.

\textbf{Diethyl 4-(3-nitrophenyl)-2, 6-diphenylpyridine-3, 5-dicarboxylate (2)}

Diethyl 4-(3-nitrophenyl)-2, 6-diphenyl dihyropyridine-3, 5-dicarboxylate (2) was being oxidized via all three procedures. Procedure 1 gave the highest yield 39\% whereas method 2 gave lowest yield 22\%. The resulting pyridine was light yellow in color and solid in nature, was confirmed through molecular ion peak and fragmentation peaks in EIMS. 13CNMR spectra showed the ester carbons CH\textsubscript{3}, CH\textsubscript{2} and C=O at 13.04 ppm, 61.48 ppm and 166.30 ppm respectively. The 1HNMR spectra of the compound showed the six protons of two ester methyl at 0.737 ppm, four protons of methylene at 3.850 ppm. Other protons of the furan and the phenyl group are also at their respective positions.
Diethyl 2, 6-dimethyl-4-(5′-(2″-nitrophenyl) furan-2′-yl)pyridine-3, 5-dicarboxylate (3)

$$\text{H}_3\text{C} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{H}_3\text{C}$$

Here again DMSO was being used as oxidizing agent for the aromatization of the above mentioned compound (3) and gave the highest yield 25% whereas other both methods gave relatively less yield 19% and 23%. EIMS confirmed the molecular weight of the compound. 1HNMR showed the signals of the ester protons at 1.078 ppm a triplet of methyl protons and at 4.163 ppm a quartet of methylene protons. All other peaks of the compound protons are at expected positions and discussed in experimental section. The 13CNMR showed the signals of ester carbons at 13.560 ppm, 61.795 ppm and 166.984 ppm CH$_3$, CH$_2$ and C=O respectively. All other carbons of the pyridines are at expected positions. Compound 3.

Diethyl 4-(5′-(2″, 4″-dichlorophenyl) furan-2′-yl)-2, 6-diphenylpyridine-3, 5-dicarboxylate (4)

$\text{Cl} \quad \text{Cl}$

Procedure 1 presented the highest yield 28% of bright yellow colored product (4). 13CNMR spectra confirmed all the carbons of the molecule. The ester carbons CH$_3$, CH$_2$ and C=O appeared at 14.008 ppm, 61.208 ppm and 164.196 ppm respectively. As far as the 1HNMR spectra is concerned the protons of ester appeared at 1.147 ppm (CH$_3$) in the form of triplet and at 4.179 ppm (CH$_2$) as quartet. The aromatic protons were at their respective positions.
Brown colored compound 5 was prepared via all three mentioned methods. These methods gave 32%, 40% and 26% respectively. The resulting pyridine was confirmed and characterized through its EIMS, 1HNMR and 13CNMR techniques. EIMS confirmed the molecular mass of the compound which is 532.2. 1HNMR spectra confirmed the number and position of protons. 6-protons of 2-methyl groups present at 2- and 6-position of the pyridine nucleus appeared as singlet at 2.490 ppm, 2-protons of NH of both the amide groups at 8.299 ppm as singlet. Rest of the protons are aromatic and they appeared at the expected positions. 13CNMR spectra showed the two methyl carbons of 2- and 6-position at 17.462 ppm. Amide carbonyl appeared at 167.1430 ppm.

2,6-dimethyl-4-(5"-(3"-nitrophenyl)furan-2"-yl)-N3,N5-diphenylpyridine-3,5-dicarboxamide (6)

Highest yield was carried out via DMSO and HNO$_3$ method (method 2) while other both methods gave relatively less yield 42% and 49% as compared to method 2. The resulting pyridine was confirmed and characterized via EIMS, 13CNMR and 1HNMR spectroscopic techniques. EIMS confirmed the molecular mass of the compound which is 532.0. The 1HNMR spectra showed the protons of amide NH at 7.853 ppm as singlet. The singlet of six protons of two methyl group at 2- and 6-positions appeared at 2.490 ppm. The furan protons and aromatic protons appeared at the expected positions and are given in the experimental section. 13CNMR spectra showed the carbons of methyl groups at 17.588 ppm, C=O of amide appeared at 167.157 ppm.
N3, N5-diphenylpyridine-4-((5′-(2′-chloro-4′-nitrophenyl) furan-2′-yl)-2, 6-dimethyl- 3, 5-dicarboxamide (7)

The product (7) was brown colored solid, stable at room temperature and was confirmed through EIMS, 1HNMR and 13CNMR techniques. EIMS confirmed the molecular mass of the compound; the fragmentation confirmed the major substituents of the compound. 1HNMR showed the protons of the compound. 6-protons of 2-methyl groups present at 2- and 6-position of the nucleus appeared at 2.541ppm in the form of the singlet. NH protons of amide appeared at 10.599 ppm as singlet. All other protons also appeared at their respective positions thus confirming the structure of desired compound. 13CNMR spectra of the compound showed the 2-carbons of both the methyl groups at 2- and 6-position at 22.10 ppm. Carbonylic carbon of amide moiety appeared at 165.34 ppm.

4-(5′-(4′-bromophenyl) furan-2′-yl)-2, 6-dimethyl-N3, N5-diphenylpyridine-3, 5-dicarboxamide (8)

Compound 8 gave less yield by using procedure 1 & 2 but showed highest yield 64% with bleaching powder. EIMS showed the molecular mass as 567.2(M+2). This value of molecular mass is due to the presence of bromo substituent. 13CNMR spectroscopic results showed the two methyl carbons 20.963 ppm, two carbonylic carbons of the amide groups appeared at 164.8ppm.
This reaction of aromatization has the same reaction conditions as the last reaction i.e, using method 3 that gave highest yield 53%. The product pyridine (9) was confirmed through 13CNMR and 1HNMR. 13CNMR showed the carbons of methyl groups at 13.14 ppm, carboxylic carbons of amide at 166.52 ppm. All other carbons appeared at respective positions and are given written in experimental part. 1HNMR showed the protons of two methyl groups at 2.496 ppm as singlet. NH protons of amide appeared at 10.270 ppm as singlet. The detail of results is given in experimental part.

The product (10) presented the highest yield 54% via method 3 and was confirmed through EIMS, 13CNMR and 1HNMR. EIMS confirmed the molecular mass of the compound. 1HNMR showed the six protons of two methyl groups at 2- and 6-position at 2.529 ppm as singlet. Two protons of NH of amide linkage is appeared at 10.676 ppm as singlet, and 13CNMR spectra showed two carbons of methyl groups at 22.067 ppm and carboxylic carbons appeared at 166.314 ppm.

4. Conclusion
Ten dihydropyridines were successfully oxidized to yield corresponding pyridines (compound 1-10) via Hantzsch reaction using three different methods. In one method only DMSO was used as solvent and as catalyst, in second method nitric acid was used in addition of DMSO while in third method bleaching powder in a mixture of ethyl acetate and water was used. All the synthesized pyridine derivatives (compounds 1-10) were yellow to brown colored solids and stable at room temperature.
These were soluble in almost all organic solvent on heating while solubility is less at room temperature. These were characterized through available analytical techniques like thin layer chromatography, melting point, mass spectrometry, proton NMR, carbon-13 NMR and elemental analysis. From all the three methods, third method is supposed to be better due to less reaction time only stirring for 5 mint at room temperature. In some cases, (compound 8-10) product yield was highest while in others comparable yields as compared to other methods. This will be a useful approach for oxidation of dihydropyridines to pyridine.

Acknowledgement: Work from the author’s laboratory was supported by grants from the Higher Education Commission of Pakistan (An indigenous Scholarship).

5. References

Boecker, R. H., & Guengerich, F. P. (1986). Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxy carbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. *Journal of Medicinal Chemistry, 29*(9), 1596-1603. doi:10.1021/jm00159a007

Holla, B. S., Akberali, P. M., & Shivananda, M. K. (2001). Studies on nitrophenylfuran derivatives: Part XII. Synthesis, characterization, antibacterial and antiviral activities of some nitrophenylfururylidene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. *Il Farmaco, 56*(12), 919-927. doi:https://doi.org/10.1016/S0014-827X(01)01124-7

